Indicates team deems this treatment category infeasible (fatally flawed) for the bridge Indicates team deems this question a basis for infeasibility Indicates additional information for feasibility determination | | Indicates additional information for feasibility determination | | | | Ş | Screening Question | ıs | | | | | | | |----|--|---|--|--|--|---|---|---|---|--|--|--|--| | | | | Phase 1 | Questions | | | | Phase 2 Questions | | | | | | | | | A | В | С | D | E | F | G | Н | 1 | | | | | ID | Treatment Category | Does it Remove
Highway Pollutants of
Concern (TSS,
oil/grease, metals)?
(Y/N) | Is it Commercially
Available and does it
have long term
availability? (Y/N) | Is the Installation or its
Parts Proprietary? (Y/N) | Does it Function On The
Bridge - i.e. During
Bridge Movement,
Vibration and Wave
Action?- (Y/N) | Are there other Potential
Ecosystems Impacts?
(Y/N) | Is the Performance Data
Available? No data
available for SW
treatment on floating
bridges (Y/N) | How Safe Is It To
Maintain On The
Bridge? (Low, Medium
High) | How Accessible and
Reasonable Is it to
Maintain? (Low,
Medium, High) | Is it Dependent on
Automated Mechanical
and Electrical Systems?
(Y/N) | | | | | | Treatment Category | Yes | Yes | N/A | No (baffles are not | Yes; need to build a pond | Yes, for land applications | High for traveling public, | Low; a confined space, | No | | | | | 1 | Gravity Separation | | | | effective) (provide documentation) | on land | | but maintenance and
bridge safety depends on
location, intent is to place
them on the pontoon deck | and requires a specially constructed boat | | | | | | 2 | Swirl Concentration | No. WSDOT testing shows poor pollutant removal performance. | Yes | would be minimal | No, because the hydraulics (swirl action) depends on stationary geometry to trap sediments | | | | | | | | | | 3 | Media Filtration - Vaults | Yes | Some Yes, but is based upon the media type | | Some yes, some media
may be unstable, move
during treatment and be
subject to clogging | No; may have impacts only if land-based | Yes | | Low; access is difficult
and frequency is high;
Requires large transfer of
media from barge to
bridge | No | | | | | 4 | Biofiltration | Yes, but because of
hydraulic loading rate is
prohibitively low, it will
require too much space
than the bridge structure
allows | Yes | | No, plant viability on shaded, concrete structure is questionable | No | Yes | | Low; would require
removal of contaminated
plants and maintenance of
plants during dry season | No | | | | | 5 | Catch Basin Media Filtration- Pillows/Cartridges | Yes, but low (may remove small particles depending on filter media) | Yes | Yes | Yes | No | Yes | | Low; Only accessible from the roadway shoulder | No | | | | | 6 | Catch Basin Filtration- Screen/Filter Bags | Yes, but low (does not remove small particles) | Yes | | Yes (because it focuses on large grit material) | No | Yes | Low; requires access from the roadway | Low; Is accessible from the roadway shoulder | No | | | | | 7 | Chemical Coagulation | Yes, but requires a post-
treatment and disposal
method | | | Yes will coagulate during
movement, but depends
upon gravity separation
for settlement | | | | | | | | | | 8 | Electrical Coagulation | No- incomplete removal of O/G, requires a post-
treatment and disposal method | Yes | | Yes; will coagulate during
movement, but requires
gravity separation
settlement (post
treatment) | | | | | | | | | | 9 | High Efficiency Sweeping | Yes, but requires a
method to pick up larger
material first; dependent
on frequency | Yes | No | Yes | | Yes, removes pollutants at the source | High (likely the safest option) | High | N/A | | | | | 10 | Modified Catch Basins/ Cleaning | Yes for large particles and floatables; depends on maintenance | No | | Yes; for large particles only | No | Yes | on roadway, but still | Medium; Is accessible from the roadway shoulder | No | | | | ## SR520 AKART Initial Screening Matrix | | Indicates additional information for feasibility determination | | | | | | | | | | | | | | | | | |----|--|---|--|--|---|---|---|---|---|--|--|--|--|--|--|--|--| | | | | | | So | creening Question | ıs | | | | | | | | | | | | | | | Phase 1 | Questions | | Phase 2 Questions | | | | | | | | | | | | | | | A | В | С | D | E | F | G | Н | 1 | | | | | | | | | ID | Treatment Category | Does it Remove
Highway Pollutants of
Concern (TSS,
oil/grease, metals)?
(Y/N) | Is it Commercially
Available and does it
have long term
availability? (Y/N) | Is the Installation or its
Parts Proprietary? (Y/N) | Does it Function On The
Bridge - i.e. During
Bridge Movement,
Vibration and Wave
Action?- (Y/N) | Are there other Potential
Ecosystems Impacts?
(Y/N) | Is the Performance Data
Available? No data
available for SW
treatment on floating
bridges (Y/N) | How Safe Is It To
Maintain On The
Bridge? (Low, Medium
High) | How Accessible and
Reasonable Is it to
Maintain? (Low,
Medium, High) | Is it Dependent on
Automated Mechanical
and Electrical Systems?
(Y/N) | | | | | | | | | | | Yes (in conjunction with | Yes, but need to be | No | Yes, but reliability | Yes, requires land-based | Yes; WSDOT has | High | Low; Pump reliability is | Yes (more so than any | | | | | | | | | 11 | Pump/Conveyance System | standard land-based
BMPs) | modified for floating bridges | | questionable | possibly in wetlands | experience with pumping
systems on floating
bridges | | | other option). Reliability
on floating bridges is
historically poor because
of marine environment | | | | | | | | | 12 | Separate Floating Structures | Yes, but similar limitations as bridge pontoons | No (all components
would have to be
designed and
constructed) | | No, infeasible to convey
runoff from bridge to
floating structure; requires
pumping | | | | | | | | | | | | | | 13 | Covered Roadway | No, leaves them on the bridge deck | No | No | Yes | Yes; Ventilation systems may require land-based application | | Low, Illumination
maintenance/ replacement
requires closed roadways | | Yes, lights and ventilation systems, fire control, phone system | | | | | | | | | 14 | Wheelwash Stations | No, may reduce TSS but not others | Yes | No | N/A | Yes; requires land-based application that raises questions of handling pollutants | Yes, but limited to construction sites | Medium | High | Yes | | | | | | | | | 15 | Mechanical Filtration | Yes, some but poor O/G removal, requires pre- or post-treatment | Yes | No | Yes | N/A | Yes | Low, requires use of a boat | Low; Requires constant
maintenance because of
system complexity | Yes, requires multiple booster pumps with filters | | | | | | | | Elements screening questions must consider: Safety Maintenance Cost Engineering Environmental Indicates team deems this treatment category infeasible (fatally flawed) for the bridge Indicates team deems this question a basis for infeasibility Indicates additional information for feasibility determination ## Screening Questions Phase 2 Questions (cont.) | | | J | K | L | M | N | 0 | P | | |----|--|---|---|--|---|---|--|--|---| | | | Is it Reliable long-term? -
Can it hold up to the
Bridge Environment? (Y/N) | Degree of Risk of
Flooding Roadway?
(Low, Medium, High) | Degree of Risk of
Flooding Pontoons?
(Low, Medium, High) | Is it Structurally
Feasible? -Compatible
With the Bridge Design?
(Y/N) | Are There Special Cost
Considerations? (Y/N) | Are There Other
Potential Adverse
Impacts -Noise,
Aesthetics? (Y/N) | Are There Compatibility
Issues With Spill
Control Systems? | Comments | | ID | Treatment Category | V | I according to | Octobbe and and side | No. Whose to the effection | Var. In an antique to an I | No. but asset asset lan | N. | | | 1 | Gravity Separation | Yes | Low | | No, if large tanks of water
are used, they create
dynamic response | Yes, larger structural components needed for additional pontoon buoyancy | No, but must consider aesthetics in design | No | | | 2 | Swirl Concentration | | | | | | | | | | 3 | Media Filtration - Vaults | Yes, if media are changed frequently | Low | No, low risk | Yes | | No, are considerations during design | Yes- after large spills,
these technologies would
plug and by-pass) | Are no other current
applications of this
technology by WSDOT;
Pretreatment required | | 4 | | No, plants are in the shade,
dormant during the wet
season, may be damaged
during storm events | Low | | There are documented cases of plants damaging integrity of concrete structures | Yes, will require significant costs with building additional structures to hold these devices | | | Does not include bio-
swales | | 5 | Catch Basin Media Filtration- Pillows/Cartridges | Yes, only if maintained properly | Medium-High; can clog rapidly and frequently under right conditions | No | Yes | Requires frequent
maintenance with a high
capital cost (media and
equipment) | No | Yes; is a function of the size of the catch basin | | | 6 | Catch Basin Filtration- Screen/Filter Bags | Yes, only if maintained properly | Medium-High; can clog rapidly and frequently under right conditions | No | Yes | Requires frequent
maintenance with a high
capital cost (media and
equipment) | No | Yes; is a function of the size of the catch basin | | | 7 | Chemical Coagulation | | | | | | | | | | 8 | Electrical Coagulation | | | | | | | | | | 9 | High Efficiency Sweeping | Yes | Low | No | Yes | Yes, commercially available sweeper units | No | No | | | 10 | | Yes, only if maintained properly | Low | No | Yes | Requires frequent maintenance | No | Yes, is a function of the size of the catch basin and only if equipped with oil separators | | Indicates additional information for feasibility determination ## **Screening Questions** Phase 2 Questions (cont.) Is it Structurally Are There Other Degree of Risk of Degree of Risk of Are There Compatibility Is it Reliable long-term? Feasible? -Compatible Are There Special Cost **Potential Adverse** Can it hold up to the Flooding Roadway? Flooding Pontoons? Issues With Spill Comments With the Bridge Design? Considerations? (Y/N) Impacts -Noise, Bridge Environment? (Y/N) (Low, Medium, High) (Low, Medium, High) Control Systems? (Y/N) Aesthetics? (Y/N) ID **Treatment Category** No; Pumping and piping Yes Requires generator back- Must consider aesthetics systems have historically up, requires 150+ pumps with pipes hanging from proven to be unreliable, even with high levels of and must be constructed with holding tanks or Pump/Conveyance System maintenance Separate Floating Structures Unknown Yes (Significantly) - Extra Yes; view issues, lighting Low Yes buoyancy, jet-fan Covered Roadway ventilation system, security systems required N/A N/A Runoff from the washing N/A Defeats the purpose of High No Construction of adequate flow-through and stations, higher traffic the project Wheelwash Stations continuous maintenance congestion Size of the facility may exceed the capacity of the treatment and special Aesthetic considerations for large facility Unknown; has limited or no Not compatible with spill applications to stormwater control. Requires Mechanical Filtration treatment separate system for spill control. Elements screening questions must consider: Maintenance Cost Engineering Environmental TABLE 1 Indentification of Unscreened Water Quality Treatment Technologies (DRAFT) | | | | | | | | | | | | Ca | ategor | y of Pollu | utants | Treate | d | | | | | | | |----------------|--------------------------------------|---|-----------------------------------|------------------------|--------------|---------------------|------------------|------------------|------------------|---------------------|----------------|---|------------------|----------|---------|---------|------------------|--------------|----------|----------|----------------|---| | | | | | | | | Soli | lids | | | | Nutrie | ents | | /letals | | xygen
manding | | Organi | cs | | | | | | | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | - Cturo | | bstances | | - Organi | | | | | Option Type | Technology | Manufacturer(s) / Vendor(s) | Information Sources | Information
Quality | Trash/Debris | Floatable Materials | Suspended Solids | Dissolved Solids | Setteable Solids | Sediments (general) | Total Nitrogen | Total Phosphorus | Org. Phosphorous | articula | ā | General | COD/BOD | Oil & Grease | Fuels | Solvents | Other Organics | Comments | | Gravity Separa | ition | | | | | | <u> </u> | | | | | 1 | Į. | | | | | | | | | | | | Stormvault | Jensen Precast | Vendor; ASCE | VG | | Х | Х | | Х | Х | Х | Х | × | X | X | | | Х | | | Lar | arge precast vault | | | BaySaver | BaySaver, Inc. | Vendor; EPA | VG | Х | Х | х | | Х | Х | | | | | | | | Х | | | Twe | wo manhole chambers | | | Inlet/Submerged StormCeptor | Rinker Materials (formerly CSR) | Vendor; EPA | VG | | х | х | | х | Х | | | | | | | | х | | | | conomically replaces inlet catch basin in small basins (48-inch diameter)
sing dual chamber for normal flow treatment and high flow bypass | | | StormGate Separator | Stormwater Management, Inc. | Vendor | G | Х | Х | Х | | Х | Х | | | | | | | | Х | | | Use | sed in conjunction with StormFilter | | Swirl Concenti | ration | Stormtreat System V2B1 | Environment 21, LLC | Vendor; EPA | VG | Х | Х | Х | | Х | Х | | | | Х | | | | Х | | | Twe | wo manhole chambers | | | Downstream Defender | Hydro International (H.I.L.) | Vendor; EPA | VG | Х | Х | Х | | Х | Х | | | | Х | | | | Х | | | | | | | Continuous Deflective Separation | CDS Technologies | Vendor; EPA | VG | Х | Х | Х | | Х | Х | | Х | | Х | | | | Х | | | Spe | pecial curb casting, large screen | | | Vortechs Stormwater Treatment Syster | Vortechnics Inc. | Vendor; EPA | VG | Х | Х | Х | | Х | Χ | | | | Х | | | | Х | | | | | | | Aqua-Swirl Concentrator | AquaShield Inc. | Vendor; EPA | VG | Х | Х | Х | | Х | Х | | | | Х | | | | Х | | | | | | | In-line/Series StormCeptor | Rinker Materials (formerly CSR) | Vendor; EPA | VG | Х | Х | Х | | Х | Χ | | | | Х | | | | Х | | | | | | Media Filtrati | on - Vault | Aquafilter | AquaShield Inc. | Vendor | G | Χ | Х | Х | | Х | Χ | Х | Х | X | X | | | Х | Х | | | Va | ault requires proprietary filter bag replacement | | | Stormwater Management StormFilter | Stormwater Management, Inc. | Vendor; UW | VG | Х | Х | Х | | Х | Χ | Х | Х | Х | X | X | | | Х | Х | | X Va | ault requires proprietary filter cartridge replacement | | | Peat Beds | Aero Terra Aqua Inc., Peat Technologies | Vendor; Shipyard AKART and permit | G | | | | | | | | | | Х | X | | | | | | Re | equires pretreatment of TSS and O/G and peat replacement | | | Sand Beds | N/A | Ecology | VG | | | | | | | Х | | | Х | X | | | | | | Re | equires pretreatment of TSS and O/G | | | Zeolyte Ion Exchange | Stormwater Management, Inc. | CalTrans; Vendor | VG | | | | | | | Х | | | | Х | | | | | | Re | equires proprietary filter media replacement | | BioFiltration | Stormtreat | Stormtreat Systems | Vendor; EPA | VG | | Χ | Х | | Х | Χ | Х | Χ | X X | X | X | | Х | Х | | | | ultiple large diameter tanks holding six sedimentation chambers
and constructed wetland:low flowrate | | Media Filtrati | on - Catch basins | Catchbasin StormFilter | Stormwater Management, Inc. | Vendor; UW | VG | Х | Х | Х | | Х | Χ | Х | Х | Х | X | X | | | Х | Х | | X Re | equires proprietary filter cartridge replacement | | | Ultra Urban Filter | AbTech Industries | Vendor; EPA | VG | Х | Х | Х | | | Χ | | | | Х | | | | Х | Х | | Re | equires replacement of proprietary filter box | | | Hydro-Kleen | Hydro Compliance | Vendor | G | Х | Х | Х | | | Χ | | | | Х | | | | Х | | | Re | equires proprietary filter bag replacement | | | Aqua Guard | AquaShield Inc. | Vendor; EPA | VG | Χ | Х | Х | | Х | Χ | Х | Χ | × | X | | | Х | Х | | | Re | equires proprietary filter bag replacement | | | Enviro-Drain | Enviro-Drain, Inc. | Vendor | G | Х | Х | Х | | | Х | | | | | | | | Х | Х | | Re | equires replacement of loose media in trays | | | FlowGuard | KriStar | Vendor; UCLA | G | Х | Х | Х | | | Х | | | | | | | | Х | Х | | | | | | Inceptor | Stormdrain Solutions, RDI | Vendor; EPA | VG | Х | Х | Х | | | Χ | | | | Х | | | | Х | | | Re | equires proprietary filter bag replacement | | | SIFT Filter | Revel Environmental Marketing, Inc. | Vendor | G | Χ | Х | Х | | Х | Χ | | | | | | | | Х | | | | | | Catch Basin | Filter with Screen/Filter Bags | | | | | | | | | | | | | | | | _ | | _ | | | | | | DrainPac Storm Drain Filter | United Stormwater, Inc. | Vendor | G | Х | Х | Х | | | Х | | | | | | | | Х | | | Ge | eotextile bag | | | Curb/Grate Inlet Basket | Bio Clean | Vendor | G | Х | Х | Х | | | Χ | | | | | | | | Х | | | | | | | StormScreen | Stormwater Management, Inc. | Vendor | G | Χ | Х | | | | Χ | | | | | | | | | | \perp | Pre | retreatment device | SEA\147164\App_d_Screening Matrix&Table1 Page 5 of 6 | | | | | | | | | | | | Categ | ory of F | Polluta | nts Tr | eated | | | | | | | | |----------------|--|-------------------------------|---|------------------------|--------------|---------------------|--------------------------------------|------------------|---------------------|---------------------|-------------------------------------|------------------|---------------------|---------------------|-----------|---------|-------------------------|--------------|-------|----------|----------------|---| | | pe Technology Manufacturer(s) / Vendor | | | | | | Solids | | | | Nu | ıtrients | | Me | Metals | | gen
Inding
tances | Organics | | | | | | Option Type | | Manufacturer(s) / Vendor(s) | Information Sources | Information
Quality | Trash/Debris | Floatable Materials | Suspended Solids
Dissolved Solids | Setteable Solids | Sediments (general) | Sediments (general) | I otal Nitrogen
Total Phosphorus | Org. Phosphorous | Nutrients (General) | Heavy (Particulate) | Dissolved | General | COD/BOD | Oil & Grease | Fuels | Solvents | Other Organics | Comments | | Chemical Coa | gulation | | | | | | 1 | | | | | | | | | | | | | | | | | I | PAM | Agro-Tech, Chemco | WSDOT | VG | | | Х | Х | Х | × | | | Х | | | | | | | | | Used as soil stabilization only; not approved for direct discharge; requires downstream treatment; experimental | | Electrical Coa | gulation | Electrical coagulation | Water Techtonics Inc. | Vendor | VG | | | Х | Х | Х | X | | | | | | | | | | | | Requires power source and downstream treatment | | High Efficienc | cy Sweeping | | | | • | | | | • | | | • | | | | • | | | | | | | | I | High Efficiency Sweeping | Tennant, Elgin, Schwarze | FHA; Vendor;CHI | G | Х | Х | Х | Х | × | X | Х | | | Χ | | | | Х | | | | Regenerative air and vacuum | | Modified Catc | ch Basins / Cleaning | Catch Basin Cleaning | N/A | Los Angeles Stormwater Management Division; EPA | G | Х | Х | Х | Х | × | X | | | | Χ | | | | Х | | | | | | - | The Snout | Best Management Products, Inc | Vendor; EPA | VG | Х | Х | Х | | X | X | | | | | | | | Х | | | | | | Pump / conve | yance System | Pump/conveyance System | Various | Vendor | G | Х | Х | Х | Х | X | X | | | | Χ | | | | Χ | | | | Requires power source | | Separate Floa | ting Structures | : | Separate Floating Structures | N/A | WSDOT | Р | | | | | | | | | | | | | | | | | | Requires off-bridge conveyance system and anchoring system | | Covered Road | dway | Covered Roadway | N/A | WSDOT | Р | | | 1 | | | | | | | | | | | | | | | Major additional structural requirements | | Wheelwash S | tations | , | Wheel Wash Stations | Interclean, VEWI | Unknown | Р | | | | | | | | | | | | | | | | | | Never used on roadways, requires power source and slow speeds | | Mechanical Fi | iltration | Synthetic Ion Exchange | US Filter | Vendor | G | | | | | | | | | | | Х | | | | | | | Requires power source, pretreatment of TSS and O/G | | | Micro Filtration | US Filter; Koch Membrane | Vendor | Р | | | Х | Х | Х | x | | | | | | | | Х | | | | Requires power source and pressurized flow (booster pump) | | | Reverse Osmosis | US Filter | Vendor | G | | | Х | | |] | х | Х | Х | | Х | Х | Χ | | | | | Requires power source, pressurized flow (booster pump) and downstream treatment/disposal | SEA\147164\App_d_Screening Matrix&Table1 Page 6 of 6 P = Poor (no cost or effectiveness data) F = Fair (limited cost and effectiveness data) G = Good (cost and effectiveness data from one source) VG = Very Good (cost and effectiveness data from multiple sources)